_!_
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ABSTRACT

This chapter describes a procedure for processing a large speech corpus to
provide a reduced set of units for concatenative synthesis. Crucial o this
reduction is the optimal utilisation of prosodic labelling to reduce acous-
tic distortion in the resulting speech waveform. We present a method for
selecting units for synthesis by optimising a weighting between continuity
distortion and unit distortion. The source-unit set is determined statisti-
cally from a speech corpus by representing it as the set of sound sequences
which occur with equal frequency, i.e., by recursively grouping pairs of seg-
ment labels to grow non-uniform-length compound label-strings. Storing
multiple units with different prosodic characteristics then ensures that the
reduced database will be maximally representative of the natural varia-
tion in the original speech. The choice of an appropriate depth to which
to prune the database reflects a trade-off between compact size and output
voice quality; a larger database is more likely to contain a prosodically ap-
propriate segment that will need less modification to reach a target setting
in the concatenated utterance.

1 Introduction

As large corpora of natural speech are becoming more widely available, we
can consider them not just as source materials for the modeling of langnage
and speech characteristics, but also as a source of units for concatenative
synthesis.

Concatenative synthesis systems have traditionally employed only a small
number of source units, using one token, or waveform segment, per type of
unit in the source-unit inventory. Such systems produce highly intelligible
speech quickly and economically, while using only a small amount of com-
puter memory and processing. However, as yet, they have failed to produce
really natural-sounding speech.

Part of the reason that even concatenative synthesis still sounds artifi-
cial is that the source units for concatenation are typically excised from
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recordings of carefully read lab speech, which although phonemically repre-
sentalive, is constrained to be prosodically neuiral The speech tokens used
as source units thus encode the relevant static spectral characteristics (or
configurations of the vocal tract) for a given sound sequence but fail to
adequately model the different dynamic articulatory characteristics of that
sequence when it is reproduced in different meaningful contexts.

The prosodic variations in hurman speech across different speaking styles
or between different parts of the same utterance are normally accompanied
by corresponding variation in phonation: i.e., by changes in voice qual-
ity such as the emphasis of higher-frequency energy that comes from the
longer closed phase of ‘pressed voice’ or the steeper roll-off of energy that
comes with ‘breathy voice’. Whereas current signal processing techniques
used in concatenative synthesis are adequate to warp the prosody of source
units to model coarse variations in fundamental frequency (fo), duration,
and energy, they fail to adapt the spectral characteristics of the concate-
nated units to encode these fine phonation differences and, as a result, the
synthetic speech sounds artificial or hyperarticulated. The simple modifi-
cation of prosody without an equivalent modelling of its phonation eflects
is insufficient.

Furthermore, since only a limited number of speech tokens are used in the
generation of a large variety of specch utterances, considerable degradation
can result from the amount of signal processing required to modify their
prosody to suit the wide variety of target contexts. For example, in match-
ing the duration of a unit, it is customary to repeat or delete waveform
segments to artificially create a longer or shorter sound. This is inherently
damaging to naturalness.

The solution we propose for the above problems requires a larger inven-
tory of speech tokens for source units, allowing several tokens for each type!
so that the token closest to the target context can be used in synthesis to
minimise subsequent signal processing. Since designing such a large inven-
tory can be difficult, and recording such a database very time-consuming,
we have developed tools to process existing corpora of natural speech to
extract suitable units for concatenative synthesis.

Extraction of a maximally varied and representative set of speech tokens
from a given speech source requires three stages of processing: a) segmen-
tal and prosodic labelling of the speech corpus, b) analysis of frequencies
and distributions of each segment type, and ¢) selection of a reduced-size
but optimally representative set of source tokens to cover the variations
encountered in each type.

1We will henceforth use the term type to refer to monophone, diphone, or
polyphone classes, and the term token, to refer to actual instances of each type
(i.e., waveform segments taken from a speech database).
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2 Segmental and Prosodic labelling

A basic requirement for a speech corpus to be processed is that it has an
accompanying orthographic transcription. This can be aligned segmentally
by generating the phone sequences that would be used to synthesise it and
using Markov modelling to perform the segmentation. Manual intervention
is still required in the segmental labelling.

Prosodic labelling is automatic, given the sequence of phone labels and
the speech waveform. For each segment in the corpus, measures are cur-
rently taken of the following prosodic dimensions; these are derived au-
tomatically from combined output of the ESPS gef f0 and fff programs
[ERL93]. With the exception of ‘duration’ the measures are taken at 10msec
intervals throughout the speech signal and then averaged over the duration
of the phone-sized segments of speech as delimited by the labels:

e duration,

fundamental frequency

L 2

waveform envelope amplitude,

spectral energy at the fundamental,
o harmonic ratio, and

* degree of spectral tilt.

These values are then z-score normalised for each phone class to express
the difference of each segment from the mean for its type in terms of the
ohserved variance for other tokens of that type for each of the above di-
mensions. To model the position of each token in relation to changes within
the respective prosodic contours, first differences of these normalised values
are then taken over a window of three phones to the left and right of each
segment. The sign of the result indicates whether a segment is part of a
rising contour (e.g., increasing pitch, loudness or length) or falling. The
magnitude indicates the rapidity of the change.

From this prosodic information (which is also later used to determine
optimal units in the selection process for synthesis), we can discriminate
hetween tokens in otherwise identical segimental contexts.

3 Defining units in the database

In a labelled speech corpus, the number of types, as defined by the mono-
phone labels on the segments, is small (on the order of 20 to 50 for most
languages) while the number of tokens of each type depends on the size of
the corpus but also varies considerably between types, from very large (for
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a few vowels) to extremely few (for some rare consonants). The type and
token distributions are defined both by the language and by the contexts
from which the speech data was collected; if the corpus is sufficiently large,
then all sound types of the language will be represented, but the number
of variants for some will be few.

The aim when processing such a corpus to produce synthesis units is to
preserve all tokens of the rare types while at the same time eliminating
duplicate or redundant tokens from the more common types. Since system
storage space is often limited and, even with efficient indexing, searching for
an optimal token in a large database can be very time-consuming, efficient
pruning of the corpus is necessary in order to control the size of the source
database, while maximising the variety of tokens retained from it.

As there are never likely to be two tokens with identical waveform char-
acteristics, ‘duplicate’ is defined here to imply proximity in the segmental
and prosodic space, as limited by the requirements of the storage available
for units in the synthesis system. That is, subject to system capacity, we
can store a number of different tokens of each type to ensure maximally
diverse coverage of the acoustic space.

3.1 Segmental types and fokens

The relation between the prosody of an utterance and variation in its spee-
tral characteristics has long been known [Gau89, Tra91]. Lindblom [Lin90]
describes the continuum of hyper- and hypospeech observed in interactive
dialogues, by which speakers tune their production to communicative and
situational demands. Sluijter & van Heuven [4], also citing such work on
overall “vocal effort” such as Gauffin & Sundberg [Gau89], showed that,
in Dutch, stressed sounds are produced with greater local vocal effort and
hence with differentially increased energy at frequencies well above the fun-
damental. More recently, Campbell & Beckman [Cam95] confirmed that for
English too, spectral tilt is affected by linguistic prominence.

It is not yet easy to quantify such phonation-style-related differences
in voice quality directly from a speech waveform, but fortunately the dif-
ferences correlate with grosser prosodic features such as prominence and
proximity to a prosodic-phrase boundary. To select a subset of tokens that
optimally encodes the phonation-style variants of each segment type, we
therefore adopt a functional approach and determine instead the contexts in
which the prosody is markedly different. Because the weak effects of phona-
tion co-occur with the stronger prosodic correlates, we label the strong to
also encode the weak. Thus it is not necessary to be able to detect the
changes in phonation style directly in a speech corpus, rather we can cap-
ture them from the gross and more easily detectable differences in fo and
duration to encode the speech segments.
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3.2 Determining the units

When reducing the size of a speech corpus to produce source units for
concatenative synthesis, we need to store the most representative tokens
of each type, ideally several of each, to be sure of enough units to cover
prosodic variation, but no more than necessary to model the langnage. The
first step is therefore to determine a set of types that uniformly describes
the distribution characteristics of phones in the corpus.

Several methods have already been suggested for the automatic extrac-
tion of units for a speech synthesis database [Nak88, Sag92, Naky4], but
these have concentrated on maximising the variety of segmental contexts,
we emphasise here the importance of also considering the prosodic context.

Under the assumption that listeners may be more sensitive to small vari-
ation in common sound sequences (such as in function-words) and more tol-
erant of variant pronunciation in less common words or in names, we cluster
the original monophone labels by frequency to determine the common se-
quences in the corpus. In this way, the number of ‘types’ is increased by
clustering the original phone labels to form non-uniform-length sequences
(compound phone-strings) for an optimal representation of the common
sound sequences in the corpus.

As function words are very common in speech, they will tend to emerge
more readily from the clustering process. As these words are often produced
with special reduction in fluent speech, this clustering allows them to be
automatically modeled separately as discrete units, without the need for
special linguistic analysis of the corpus.

The algorithm for determining the unit set is given in pseudocode in
Fig 1 is derived from [Sag92] but uses counts instead of entropy. In a pro-
cess similar to Huffman coding, the most frequently-occurring label is con-
joined with its most frequently co-occurring neighbour to produce a new
compound type and the cycle is repeated using the increased set. At each
iteration the number of types grows, and the token count of the two most
frequent conjoined types correspondingly decreases.

The loop terminates when a threshold specifying the maximum number
of tokens for any type has been reached. This threshold (and by implication,
the ultimate number of types) is arbitrarily chosen, according to the initial
size of the corpus and the degree of reduction required, to be approximately
five-times the number of tokens required from each type. The greater the
number of tokens per type, the better the prosodic flexibility of the final
unit set.

This stage of processing yields a set of new labels which describe the
frequency of co-occurrence of the speech sounds in the corpus. The result-
ing set of compound types ensures that (with the exception of the very
few sparse-token types) each unit is equally likely in the language being
modelled. Infrequently occurring types (such as /zh/ in English or /tsa/ in
Japanese) will not be clustered, and all tokens of each are preserved.
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main-loop
set threshold =
initialize: types = labels

while( number_of_tokens( any type ) > threshold ) do
current_type = max( count tokens of each type )
for( most frequent type) do
max = find _most_frequent_neighbour( current_type ?
return( compound_type { current, max ))

find_most_frequent_neighbour( current )
for( tokens in database )
if( type == current )
count left_neighbour types
count right_meighbour types
return( max({ left_neighbour types, right_neighbour types )

compound_type ( current, most_freq )
if( most_freq == left_neighbour)
return{ concat{ most_freq_neighbour + current_label ))
else
return( concat( current_label + most_freq neighbour ))

FIGURE 1. Rectangularisation algorithm: Subdivide the frequent units, and clus-
ter them with their most common neighbours to form longer units.

The remaining tokens of the more common types can now be reduced
to prune down the size of the database to meet system limitations. How-
ever, rather than simply select the one most typical token of each type, we
preserve a number of each, up to the limits of storage space.

3.8 Pruning the database

To ensure best coverage of the prosodic space, we next select the n most
prosodically diverse tokens to represent each type of unit. Vector quan-
tisation is performed to cluster all tokens of each type in turn according
to their prosodic characteristics. For each type, the tokens closest to the
centroid of each cluster are then taken as representative.

The number of clusters (n) specifies the depth n to which to prune the
database. Thus the ultimate size of the source-unit database will be slightly
less than n times the number of types (there usually being less than n
tokens of the rarest few types). The size of the quantization codebook is
thus determined as a function of the number of tokens to be retained for
each type.

The choice of an appropriate depth to which to prune a large source
corpus is a trade-off between compact size and synthetic speech quality; a
larger source-unit database is more likely to contain a prosodically appro-
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priate segment that will need less modification to reach a target setting in
the concatenated utterance. If only one token were to be stored for each
type (i.¢e., to produce the smallest and least flexible unit set that still cov-
ers the segmental variety in the corpus), then we would simply choose the
token closest to the centroid for each type, without using prosodic vector
quantisation, to be sure of having the most typical token.

By taking more than one token to represent each type, we are assured not
only that all contextual segmental variation in the original corpus will be
preserved. but also that we will be better able to match different prosodic
environments; the more tokens, the more flexibility of coverage. In this
way we no longer have to synthesise using the one most typical token in all
prosodic contexts, but can select from several. The supposedly redundant
units, whose segmental environment is the same but which actually differ in
prosodic aspects, can be selected from to minimise the amount of waveform
distortion needed to match the target prosody for a particular utterance.

4 Prosody-based unit selection

Each unit in the database is labelled with a set of features. These features
include phonetic and prosodic features (such as duration, pitch power etc.)
to which are added acoustic features (such as cepstral frame quantisation).
The features available are database dependent, though we expect at least
phone label, duration pitch and power. As far as possible features are speci-
fied in terms of z-scores so distances are normalized between features. Other
features are used in a database unit description that do not directly affect
selection (e.g., position in the waveform file).

For selection of units for synthesis, the target segments (predicted by
earlier components of the synthesizer, or for testing purposes taken from
natural speech) are specified with a subset of these features to specify the
characteristics of the utterance and its prosody.

Because of the richness of this information, we do not {though could
if our databases were so labelled) use all the acoustic measures described
in [Sagd2] for selection. We are testing the assumption that appropriate
prosodic characterisation will capture the acoustic differences in the units,
and that we can thereby avoid computationally expensive acoustic measures
to achieve faster unit selection.

In this selection model, we define two types of distortion to be minimized
to find the best sequence of units.

¢ Unit distortion is defined as the distance Du(s;,%;) between a se-
lected unit and a target segment, i.c., the weighted mean distance
between non-zero-weighted features of the selected unit feature vec-
tor {sf1,5f2, - 5fn} and the target segment vector {¢f1,fs, wrtfn}-
Distances are normalised between 0 (good) and 1 (bad). Weights too
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are between 0 and 1 causing Du to also lie between 0 and 1.

¢ Continuity distortion is the distance De(s;, 8;~1) between a se-
lected unit and its immediately adjoining previous selected unit. This
is defined similarly to Du as a weighted mean distance between non-
zero-weighted features of a selected unit’s feature vector and that of
the previous unit.

The weights for significant (i.e. non-zero-weighted) features in unit distor-
tion and continuity distortion will be different, as will be the choice of
features. Vectors may also include features about a unit’s context as well
ag the unit itself.

Varying the weights allows the relative importance of features to change,
for example allowing pitch to play a greater role in selection than duration.
The values may also be zero, thus altogether eliminating a feature from
the selection criteria. The weights for unit distortion will differ from the
weights for continuity distortion.

The following diagram illustrates this distinction between distortion mea-
sures.

Continuity
distortion
Select
Units L] D 0 O
Unit
distortion

Target
Segments O O 0O
The best unit sequence is the path of units from the database which mini-
mizes

7 (De(si, 5i—1) * WJ + Du(ti, s;) * WU)

where n is the number of segments in the target, and WJ and WU are
further weights. Maximizing W J with respect to WU minimizes the dis-
tortion between selected units at the (possible) expense of distance from
the target segments.

Defining the optimal value of the weights so that the best selection pro-
duces the perceptually best quality synthesis is non-trivial. Some measure
is required to determine if the best selection is perceptually better to a
listener.

Human perceptual tests are one measure but they are prone to errors and
are neither very discriminatory at fine detail, nor automatic. Another more
objective measure is the mean Euclidean cepstral distance [Rab93, pp 150-
171] between (time-aligned) vectors of selected units and target segments.
In the special test case of mimicking a natural speech utterance from the
speaker of the source database, the target features are completely known
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and an objective quantification of the degree of match can be obtained. But,
it is open to question how closely the cepstral distance measure predicts
human perceptual characteristics, This issue is addressed further below.

4.1  Optimising the weightings

A beam search algorithm was used to find the best units based on the
above minimization criteria. Originally for each database all weights were
hand tuned without any formal measurement (and interestingly they were
noticeably different for different databases), The following procedure is now
employed to optimise these weights automatically and determine the best
combination for each database.

First an utterance is removed from the database so its segments
are no longer available for selection. Its natural segments are
used to define the parameters of the test utterance fo ensure
that testing is independent of any higher levels of the synthesis
system. ‘

The beam search algorithm is used to find the best selection of
units that minimize the distance described above, with respect
to a set of weights.

The cepstra of the selected units are time aligned with those of
the target segments, and the mean Euclidean cepstral distance
between target {original) segments and the selected (replace-
ment) units is calculated.

The process is repeated with varying weights until they converge
on a minimum mean cepstral distance.

This process is not ideal, as minimizing cepstral distance may not maximize
the quality of the synthesized speech, but it is an objective measure which
as we will show offers some correlation with human perception. Problems
with this measure and some ways in how it may be improved are discussed
below.

5 Evaluation

Unit selection is only a small part of the whole synthesis process, and for full
synthesis, higher level modules generate a segment description specifying
the appropriate features (e.g., predicting values for fo, duration, power),
and subsequent signal processing is applied to the waveforms of the se-
lected units modifying them to the desired target values and reducing any
discontinuities at the joins between units.

However, for the tests presented here, we are concerned only with unit
selection and did not want to confound our results with any errors from
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higher-level modules. We therefore used as a target the prosody and phone
sequences of original natural utterances, and performed no subsequent sig-
nal processing. In this way we were able to test the selection of units under
controlled conditions without having to take into comsideration possible
effects of other modules.

5.1 Test 1: full database

Using a medium-size database of English female radio announcer speech
{44,758 phone labels) [BU-95], we varied weightings of four individual fea-
tures used in measuring unit distortion and overall continuity distortion
(WJ). The four features were: local phonetic context, pitch, duration and
power.

To evaluate the relationship between objective cepstral and subjective
perceptual distance measures, we asked subjects to score a set of utter-
ances selected using different weights, and compared their scores with the
cepstral measures. Six subjects were presented with speech synthesised by
concatenation according to the different weightings.

The material consisted of seven combinations of features for selecting
two sentences, each repeated three times, in randomised order (giving 45
utterances in all, including three dummy sentences to allow for acclimati-
sation).

Tests were administered by computer, and no records were kept of the
time in each waveform where subjects detected a poorly-selected unit, only
of the response counts. Subjects were asked to simply indicate perceived dis-
continuities (“bad segments”) in each test utterance by pressing the return
key, and to ignore any ‘clicks’ arising from simple abutting of segments. In
the ideal case, where suitable segments were selected, the amount of noise
was minimal because like was being joined with like. The typical length of
segment was about two phones, and in the average case, a discontinuity
was noticeable between one in four pairs.

In practice, perceptual scores varied considerably between respondents,
with some appearing much more sensitive to abutment noise than others,
but after counts were normalised per speaker, analysis of variance showed
no significant effect for speaker, nor for utterance, but a clear difference for
selection weighting type (F(6,231) = 5.865), confirming that the prefer-
ences were in agreement in spite of the differences in individual sensitivity.

The following table compares results from the perceptual test with the
cepstral distances, for some range of weights. The perception measure rep-
resents the average score for each selection type, normalised by subject and
target sentence. It is in standard deviation units. (PC is phonetic context)
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wJ WU =1.0 Perceptual | Cepstral
PC | Power | Dur | Pitch Measure | Distance
06 || 0600 0.333 | 0.333 -0.55 0.2004
0.6 0.2 | 0.666 | 1.0 0.0 -0.49 0.2004
02 || 0210 0.666 | 1.0 -0.38 0.1967
0.2 ||02}1.0 0.333 | 0.333 -0.07 0.1981
0.6 |{ 04 |0333 |10 0.333 0.12 0.1981
0.8 || 04|00 0.0 0.0 0.24 0.2050
0.8 0.6 0.0 0.0 0.0 0.bb 0.2056

The cepstral distance seems to give more importance to unit distortion at
the expense of continuity distortion. Human perception favours more weight
on WJ (i.e. less continuity distortion). This is because the cepstral measure
takes the mean error over each point. Therefore continuous closeness is
favoured over short “burst errors” that occur at bad joins. Humans however
are upset by burst errors as well as prosodic mismatches, and hence prefer
a balance of WJ to WU, Obviously a better automatic distance measure is
required which appropriately penalises burst errors. Although the numeric
distances of the cepstral measure are small, the quality of the synthesis
varies from very jumpy almost unrecognizable speech to undetectable unit
concatenation producing natural sounding speech.

5.2 Test 2: reduced database

A further test was performed with a reduced database of Japanese. The
units for the synthesiser were selected from a corpus of 503 magazine and
newspaper sentence readings. In Japanese, which is not a stress-based lan-
guage, there is not as great a range of prosodic variation as in English, and
the damage to naturalness caused by subsequent signal processing is less,
but the inclusion of prosodic information in the selection process ensured
selection of more appropriate units according to an acoustic measure of
spectral characteristics.

The source database consisted of 26,264 phone segments, and included
70 original labels (including segment clusters that could not be reliably sep-
arated by hand labellers). After processing, these formed 635 non-uniform
units ranging in length from 1 to 7 original labels. It was pruned to a
maximum depth of 35 tokens each.

Target segment labels and raw prosodic values of durafion, mean pitch,
and energy for each phone were extracted from a test set of 100 randomly se-
lected sentences, and each original sentence was removed from the database
before resynthesis to ensure that no original units were included. The resyn-
thesised version was then compared with the original, using measures of
cepstral similarity. Comparisons were made between the original record-
ing of each sentence, and resynthesised versions with and without prosodic
gelection.
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Non-weighted Euclidean measures of the cepstral distance between the
original utterance and each resynthesised version were calculated on a
phone-by-phone basis using 12 coefficients per 10 msec frame from LPC
cepstral coding of the waveforms. Results confirmed that an improvement
in spectral match was gained by inclusion of prosodic information in the
selection (seg only vs. seg+pros: ¢ = 4.484, df = 6474,p < 0.001).

Quartiles of the Euclidean cepstral distance measure
min 25%  median 78% max
segmental context alone: 0.0071 0.3965 0.8581 1.7219 8.8546
segmental & prosodic ctxt: 0.0073  0.3167 0.6232 1.4390 10.3748

The improved spectral match in turn confirms a strong connection be-
tween prosodic and segmental characteristics of the speech waveform, and
shows that the inclusion of prosodic information in the selection of units
can result in more natural sounding synthetic cpeech.

6 Discussion

We have shown that prosodic variation has more than a small effect on the
spectral characteristics of speech, and that advantage can be taken of this
in the selection of units for concatenative synthesis. We have also shown
that a database of non-uniform units can be antomatically generated from
a labelled corpus and that the prosodic characteristics of contour shape and
excursion can be automatically coded. Nothing above will make up for the
lack of an appropriate unit in a corpus, and careful choice of this resource
is essential, but a way of making better use of the supposedly redundant
duplicate tokens has been suggested.

Most concatenative synthesis methods still employ a relatively small fixed
number of source units, under the assumption that any modification of their
inherent pitch and duration can be performed independently at a later stage
through signal processing. The distortion of the synthesised speech, that is
introduced as a result of changing a segment’s prosodic characteristics, has
until recently been masked by the generally poor, mechanical quality of the
generated speech after it has passed through a coding stage. However, as
synthesis quality has improved, and as the memory limitations of earlier
systems are cased, it now becomes necessary to reconsider the merits of
such small unit sets.

Future refinements to objective measurement procedures must include a
bias to the cepstral distance measure to increase semsitivity to local con-
catenation points (‘burst errors’) and hence better approximate the human
preferences. It should also be noted that such acoustic measures, because
of the necessary time-alignment, are blind to inappropriate durations, and
will not degrade under sub-optimal timing patterns, so for this reason too,
they may not correlate well with human perception.
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7 Conclusion

This paper has addressed several aspects of the concatenative synthesis
process. We have shown that a large corpus of naturally-oceurring speech
can be used as a source of units for concatenative synthesis, and have
described the tools and processes that we use for this.

The prosodic labelling is generated antomatically from the speech data.
The method is thus relatively language independent, and relies only on a)
an adequate size corpus from which to draw the units, and b) a suitable
language interface module by which to generate the transcriptions and
predict the prosody for the utterance to be synthesised.

By specifying prosodic variation in terms of variance about a mean, and
the slope of prosodic contours in terms of the differential of the normalised
measures, we gain the advantage of speaker-independence in our synthesiser
processes. The higher-level prosody prediction modules can now specify
their targets in normalised terms, and whatever the database, regardless
of the prediction values, the retrieved values are constrained to be within
the natural range for the speaker’s voice. Describing the pitch of a segment
as, for example, ‘moderately high and rising’ ensures that the closest unit
in the database will be selected, and in many cases the difference between
the desired target pitch and retrieved unit’s original will be small enough
to be perceptually insignificant.

Our unit-generation algorithm produces a unit set that models the collo-
cation frequencies of the input data in terms of its own labels by grouping
them into equally-likely non-uniform compound units.

At the waveform level, we have questioned the validity of applying signal-
processing techniques to warp the prosody of a speech segment, preferring
instead to select appropriate units to minimise such post-selection distor-
tion. We have shown simple and efficient ways to do this.

Experience with this system encourages us to believe that in the majority
of cases it is better to relax our target goals in the direction of the database
events rather than to impose an unnatural (and possibly distorting) pitch
or duration on the waveform.

The method is currently being tested with several databases from dif-
ferent speakers of both English and Japanese, under different labelling
conventions, and appears immune to differences in language or labelling
conventions.
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